Improved graph-based SFA: Information preservation complements the slowness principle

نویسندگان

  • Alberto N. Escalante
  • Laurenz Wiskott
چکیده

Slow feature analysis (SFA) is an unsupervised-learning algorithm that extracts slowly varying features from a multi-dimensional time series. A supervised extension to SFA for classification and regression is graph-based SFA (GSFA). GSFA is based on the preservation of similarities, which are specified by a graph structure derived from the labels. It has been shown that hierarchical GSFA (HGSFA) allows learning from images and other high-dimensional data. The feature space spanned by HGSFA is complex due to the composition of the nonlinearities of the nodes in the network. However, we show that the network discards useful information prematurely before it reaches higher nodes, resulting in suboptimal global slowness and an under-exploited feature space. To counteract these problems, we propose an extension called hierarchical information-preserving GSFA (HiGSFA), where information preservation complements the slowness-maximization goal. We build a 10-layer HiGSFA network to estimate human age from facial photographs of the MORPH-II database, achieving a mean absolute error of 3.50 years, improving the state-of-the-art performance. HiGSFA and HGSFA support multiple-labels and offer a rich feature space, feed-forward training, and linear complexity in the number of samples and dimensions. Furthermore, HiGSFA outperforms HGSFA in terms of feature slowness, estimation accuracy and input reconstruction, giving rise to a promising hierarchical supervised-learning approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowness Learning: Mathematical Approaches and Synaptic Mechanisms

In this thesis, we investigate slowness as an unsupervised learning principle of sensory processing. Two aspects are given particular emphasis: (a) the mathematical analysis of Slow Feature Analysis (SFA) as one particular implementation of slowness learning and (b) the question, how slowness learning can be implemented in a biologically plausible fashion. In the first part of the thesis, we de...

متن کامل

Predictive Coding and the Slowness Principle: An Information-Theoretic Approach

Understanding the guiding principles of sensory coding strategies is a main goal in computational neuroscience. Among others, the principles of predictive coding and slowness appear to capture aspects of sensory processing. Predictive coding postulates that sensory systems are adapted to the structure of their input signals such that information about future inputs is encoded. Slow feature anal...

متن کامل

Slow Feature Analysis: A Theoretical Analysis of Optimal Free Responses

Temporal slowness is a learning principle that allows learning of invariant representations by extracting slowly varying features from quickly varying input signals. Slow feature analysis (SFA) is an efficient algorithm based on this principle and has been applied to the learning of translation, scale, and other invariances in a simple model of the visual system. Here, a theoretical analysis of...

متن کامل

Modeling place field activity with hierarchical slow feature analysis

What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields ...

متن کامل

How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis

Supervised learning from high-dimensional data, for example, multimedia data, is a challenging task. We propose an extension of slow feature analysis (SFA) for supervised dimensionality reduction called graph-based SFA (GSFA). The algorithm extracts a label-predictive low-dimensional set of features that can be post-processed by typical supervised algorithms to generate the final label or class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.03945  شماره 

صفحات  -

تاریخ انتشار 2016